Correlation matrix
Similarity
Let’s create two datasets, \mu_1 and \mu_2 such that
\mu_i = \{x_1,\dots,x_n\} \sim \{\mathcal{U}_1(-1,1),\dots,\mathcal{U}_n(-1,1)\}
We will use N=100 observations for a vector sized n=10.
import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.spatial.distance import squareform
n = 10
N = 100
np.random.seed(0)
mu_1 = np.random.normal(loc=0, scale=1, size=(N, n))
mu_2 = np.random.normal(loc=0, scale=1, size=(N, n))We now add some noise, \epsilon=0.6, to \mu_2 such that
\mu_2 = \epsilon \mu_2 + (1-\epsilon)*\mu_1
epsilon = 0.6
mu_2 = epsilon*mu_2 + (1-epsilon)*mu_1We use Pandas to calculate the correlation matrix:
C1 = pd.DataFrame(mu_1).corr()
C2 = pd.DataFrame(mu_2).corr()And we plot the correlation matrices.
import seaborn as sns
import matplotlib.pyplot as plt
f,axes = plt.subplots(1,2, figsize=(10,5))
sns.set_style("white")
for ix, m in enumerate([C1,C2]):
sns.heatmap(m, cmap="RdBu_r", center=0, vmin=-1, vmax=1, ax=axes[ix], square=True, cbar_kws={"shrink": .5}, xticklabels=True)
axes[ix].set(title=f"$C_{ix+1}$")Spearman correlation
Calculate similarity using Spearman correlation between the top triangle of the covariance matrices C_1 and C_2.
indices = np.triu_indices(C1.shape[0], k=1)
print(C1[indices])